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Abstract
The decoherence and entanglement dynamics of two interacting qubits coupled
through Heisenberg XY interactions to a spin bath in thermal equilibrium are
studied. The exact form of the reduced density matrix is derived for finite and
infinite numbers of environmental spins. It is shown that decoherence can be
minimized at low bath temperatures and strong coupling between the qubits.
Some initial product states evolve into entangled ones, initially entangled states
lose completely or partially their entanglement. The relation between the
fidelity and the concurrence is also investigated.

PACS numbers: 03.65.Yz, 75.10.Jm, 03.67.Mn, 73.21.La

1. Introduction

Entanglement is the most intriguing feature of quantum mechanics. It is a nonlocal
correlation between separate quantum-mechanical systems which does not have a classical
counterpart. Besides its fundamental importance in the foundation of quantum mechanics
[1–3], entanglement is considered as a valuable resource for quantum communications and
information processing [4–9] since it helps speeding-up implementation of quantum algorithms
and quantum communication protocols [10]. Considerable effort, both theoretically and
experimentally, have been devoted to the understanding of entanglement. Recently, intense
interest has been given to interacting spin systems which were proposed as candidates to
achieve gate operations in solid-state quantum computation processors [11, 12]. This choice
is motivated by the fact that such systems can be easily manipulated (e.g. by tunnelling
potentials and energy bias), and scaled up to large registers. Hence, it is important to investigate
entanglement generation and dynamics in spin systems.

On the other hand, quantum systems suffer decoherence because of their unwanted
interactions with the surrounding environment. The decoherence process is indeed the major
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obstacle for quantum information processing because it directly affects quantum interferences
and correlations (entanglement) of quantum systems, leading them to behave classically
[13–15]. Many strategies such as error-correcting codes and decoherence free subspaces were
proposed in order to protect fragile quantum information against the detrimental effect of
decoherence [16–22]. A number of theoretical studies have dealt with bosonic environments
for which the Markovian approximation along with the master equation approach is often used.
It turns out that the main contribution to decoherence in many solid-state systems (e.g. quantum
dots) arises from the coupling to localized modes like nuclear spins, which can be effectively
regarded as spin baths [23]. Recently, attention has been focused on the non-Markovian
dynamics of multi-qubit systems interacting with spin environments [24–29]. In our earlier
work [24], we have studied the reduced dynamics of the two-qubit system coupled through
Heisenberg XY interactions to the spin star bath which was assumed at infinite temperature.
We neglected the interaction between the central qubits. Later, Yuan et al [25] derived the
dynamics of the two interacting qubits for particular initial states and finite bath temperature,
using Holstein–Primakoff transformations expanded up to the first order with respect to the
number of environmental spins. The elements of the resulting reduced density matrix were
given in the thermodynamic limit by infinite series. In the following paper, we derive the exact
dynamics of the central qubits, for an arbitrary number of environmental spins at finite bath
temperature, without making recourse to any approximation. The key ingredient in this case
consists of the underlying symmetries of the model Hamiltonian which facilitate the derivation
of exact analytical results.

The paper is organized as follows. In section 2, we introduce the model Hamiltonian of
the composite system qubits-bath. In section 3 after we derive the analytical form of the time
evolution operator, we calculate the reduced density matrix for both finite and infinite number
of spins in the environment. In section 4, we investigate decoherence and entanglement
evolution of the two-qubit system for different initial states. A brief conclusion ends the paper.

2. The model

The system under consideration consists of a pair of interacting spin- 1
2 particles (qubits)

coupled to a quantum bath composed of a large number of spin- 1
2 particles in thermal

equilibrium at temperature T. The number of environmental spins is denoted by N. The
Hamiltonian of the composite system is given by the sum of three operators, namely

H = H0 + HB + HI . (1)

H0 describes the interaction between the central spins, it is given by the anisotropic Heisenberg
Hamiltonian

H0 = �
(
σ 1

x σ 2
x + σ 1

y σ 2
y

)
+ λσ 1

z σ 2
z , (2)

where λ and � denote the strength of interactions, and σ i
ν (with ν ≡ x, y, z) is the ν-component

of the pauli operator �σ i associated with qubit number i. The corresponding spin-flip operators
are defined by σ i

± = σ i
x ± σ i

y .
Similarly, the environmental spins interact with each other through long-range anisotropic

Heisenberg interactions. These are described by the bath Hamiltonian

HB = g

N

N∑
i<j

(
Si

BxS
j

Bx + Si
ByS

j

By + �Si
BzS

j

Bz

)
, (3)

where Si
B(i = 1, 2, . . . , N) are the spin operators of bath constituents, g is the strength of

interactions and � is the anisotropy constant. The central spins couple to the environment
through Heisenberg XY interactions; the corresponding Hamiltonian operator is given by
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HI = α√
N

[(
σ 1

x + σ 2
x

) N∑
i=1

Si
Bx +

(
σ 1

y + σ 2
y

) N∑
i=1

Si
By

]
. (4)

In the above equation α designates the coupling constant of the qubits to the bath. Note that
the coupling constants g and α are rescaled by, respectively, N and

√
N in order to ensure

good thermodynamical behaviour.
By introducing the total spin operator of the environment, �J = 1

2

∑N
j=1 �σ j , together with

the corresponding lowering and raising operators, J± = Jx ± iJy , it can be shown that (up to
a trivial constant)

HI + HB = α√
N

[(
σ 1

+ + σ 2
+

)
J− +

(
σ 1

− + σ 2
−

)
J+

]
+

g

2N

[
J 2 + (� − 1)J 2

z

)]
. (5)

Clearly, the model Hamiltonian is invariant under rotations with respect to the z-direction.
One can show by a direct calculation that the operator Jz +S1

z +S2
z , where Si

z = 1
2σ i

z , commutes
with H, i.e. [H, Jz + S1

z + S2
z ]− = 0. This simply implies that the z-component of the total spin

of the composite system is conserved.
The spin space corresponding to the central system is given by C

2 ⊗ C
2 = C

1 ⊕ C
3. The

subspace C
3 is spanned by the state vectors |1,−1〉, |1, 0〉 and |1, 1〉. These are related to

the basis vectors of C
2 ⊗ C

2 (called computational basis vectors) by |1,±1〉 = |±,±〉 and
|1, 0〉 = 1√

2
(|− +〉 + |+ −〉). The space C

1, in turn, is spanned by the antisymmetric maximally

entangled bell state |0, 0〉 = 1√
2
(|− +〉 − |+ −〉). The above equalities fully determine the

unitary transformation that enables us to go from one basis to the other.
The standard basis of the bath space, (C2)⊗N , is composed of the joint eigenvectors of J 2

and Jz which we denote by |j,m〉, where J 2|j,m〉 = j (j + 1)|j,m〉 and Jz|j,m〉 = m|j,m〉.
Note that 0 � j � N/2 and −j � m � j . One can then decompose the spin space of the
environment as the direct sum of subspaces C

dj , each of which has dimension dj = 2j + 1,
namely

(C2)⊗N =
N/2⊕
j=0

ν(N, j)Cdj . (6)

Here ν(N, j) is the multiplicity associated with j . In order to determine the explicit value
of ν(N, j), let us introduce the subspace Fm of vectors ϑ ∈ (C2)⊗N satisfying Jzϑ = mϑ

[30]. The latter space can be decomposed as a direct sum of subspaces Ej,m formed by
the vectors ϑ̄ for which J 2ϑ̄ = j (j + 1)ϑ̄ . Thus, we simply have Fm = ⊕N/2

j=m Ej,m and

dim(Fm) = ∑N/2
j=m dim(Ej,m) = (

N
N
2 −m

)
. From the above, it immediately follows that

ν(N, j) = dim(Fj ) − dim(Fj+1) =
(

N
N
2 − j

)
−

(
N

N
2 − j − 1

)
. (7)

3. Exact time evolution

This section deals with the derivation of the exact reduced dynamics of the central qubits. The
time dependence of the total density matrix describing the state of the composite system is
given as usual by

ρtot(t) = U(t)ρtot(0)U†(t), (8)

where U(t) = exp(−iHt) is the time evolution operator and ρtot(0) is the initial total density
matrix. In the following, after we introduce the initial states of the central system and the bath,
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we derive the exact analytical form of U(t), then we calculate the time-dependent reduced
density matrix ρ(t) for both finite and infinite number of environmental spins.

3.1. Initial conditions

At t = 0 the central two-qubit system is assumed to be decoupled from the environment. This
means that ρtot(0) factorizes into the following direct product:

ρtot(0) = ρ(0) ⊗ ρB(0), (9)

where ρ(0) and ρB(0) are, respectively, the initial density matrices corresponding to the
two-qubit system and the environment.

Initially, the spin environment is taken in thermal equilibrium at the finite temperature T.
The density matrix ρB(0) is simply given by the Boltzmann distribution

ρB(0) = 1

ZN

e− gβ

2N
[J 2+(�−1)J 2

z ], (10)

where ZN = trB
{
e− gβ

2N
[J 2+(�−1)J 2

z ]
}

is the partition function corresponding to the spin bath and
β = 1

T
is the inverse temperature. Note that the Boltzmann constant is set to one, i.e. kB = 1.

The partition function ZN can be expressed as [31]

ZN =
N/2∑
j=0

ν(N, j)

j∑
m=−j

e− gβ

2N
[j (j+1)+(�−1)m2]. (11)

In particular, we have limβ→0 ρB(0) = 2−N
IN , where IN stands for the unity matrix in the

bath space.
Let us now assume that at t = 0 the two-qubit system is prepared in the normalized state

|
(0)〉 = ∑
i ai |ξi〉, where |ξi〉 ∈ {|1,−1〉, |1, 0〉, |1, 1〉, |0, 0〉} and

∑
i |ai |2 = 1. Therefore,

the initial density matrix of the central spins can be written in the standard basis of C
1 ⊕C

3 as

ρ(0) =
∑
ij

ρ0
ij |ξi〉〈ξj |, ρ0

ij = aia
∗
j ,

4∑
i=1

ρ0
ii = 1. (12)

The time-dependent density matrix ρ(t) is calculated by performing the trace with respect to
the environmental degrees of freedom, i.e. ρ(t) = trB{ρtot(t)}. This can be rewritten in terms
of the common eigenvectors of J 2 and Jz as follows:

ρ(t) =
∑
k,�

ρ0
k

N/2∑
j=0

ν(N, j)

j∑
m=−j

〈jm|U(t)|ξk〉ρB(0)〈ξ�|U†(t)|jm〉. (13)

3.2. Time evolution operator

Before we proceed with the determination of the reduced dynamics, it should be noted that the
evolution in time of the central qubits depends on the nature of interactions between the spins
in the environment. In the case of single central spin it is found that for antiferromagnetic
interactions within the bath, the effect of the anisotropy constant � can be neglected when the
number of environmental spins becomes sufficiently large (typically of the order of 100) [29].
The above result is independent of the number of central qubits as long as their coupling to
the bath does not include interactions of the form σ i

z ⊗ Jz. Hence, it is sufficient to investigate
the isotropic case which exhibits the advantage of making our model exactly solvable. This
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is mainly due to the fact that [HB,HI ] = 0 when � = 1, implying that the time evolution
operator reduces to exp{−i(H0 + HI)}.

It is worth mentioning that due to symmetry, states belonging to C
3 and C

1 never mix; they
evolve independently from each other without leaving the subspaces to which they belong.
Thus we can write the model Hamiltonian as the direct sum of two operators living in the
above subspaces. Indeed, the Hamiltonian operators H0 and HI can be written in C

3 ⊗(C2)⊗N

(up to a trivial constant for H0) as

H0 =

ε 0 0

0 −ε 0
0 0 ε


 ⊗ IN, HI = α√

N


 0 J+ 0

J− 0 J+

0 J− 0


 , (14)

where ε = λ−�. Similarly, in the subspace C
1 ⊗(C2)⊗N we can rewrite the free Hamiltonian

as H0 = −κIN , where κ = 3� + λ. Since the action of the interaction Hamiltonian vanishes
in this subspace, it immediately follows that Hn = (−κ)n. Furthermore, it can be shown that
in C

3 ⊗ (C2)⊗N the operator H0 anticommutes with HI , i.e. [H0,HI ]+ = 0 and H 2 = H 2
I +ε2.

We have shown in [24] that in C
3 ⊗ (C2)⊗N , the powers of HI are given by

H 2n
I =

(
α√
N

)2n


J+K

n−1J− 0 J+K
n−1J+

0 Kn 0
J−Kn−1J− 0 J−Kn−1J+


 , (15)

H 2n+1
I =

(
α√
N

)2n+1

 0 J+K

n 0
KnJ− 0 KnJ+

0 J−Kn 0


 , (16)

where K = J+J− + J−J+ = 2
(
J 2 − J 2

z

)
. Using the above relations it is possible to derive

general expressions for even and odd powers of H = H0 + HI .
As an example, let us calculate H 2n

11 . We have for n � 1

H 2n =
n∑

k=0

H 2k
I ε2(n−k)

(
n

k

)
. (17)

Therefore,

H 2n
11 = ε2n + J+

n∑
�=1

α̃2�K�−1ε2(n−�)

(
n

�

)
J− = ε2n (18)

+ J+

n∑
�=0

[
α̃2�

K
K�ε2(n−�)

(
n

�

)
− ε2n

K

]
J− = ε2n + J+

(ε2 + α̃2K)n − ε2n

K
J−, (19)

where we have introduced α̃ = α/
√

N for the ease of notation. Using the same method we
get

H 2n =




ε2n + J+
(ε2+α̃2K)n−ε2n

K
J− 0 J+

(ε2+α̃2K)n−ε2n

K
J+

0 (ε2 + α̃2K)n 0

J− (ε2+α̃2K)n−ε2n

K
J− 0 ε2n + J− (ε2+α̃2K)n−ε2n

K
J+


 , (20)

H 2n+1 =




ε2n+1 + εJ+
(ε2+α̃2K)n−ε2n

K
J− α̃J+(ε

2 + α̃2K)n εJ+
(ε2+α̃2K)n−ε2n

K
J+

α̃(ε2 + α̃K)nJ− −ε(ε2 + α̃2K)n α̃(ε2 + α̃2K)nJ+

εJ− (ε2+α̃2K)n−ε2n

K
J− α̃J−(ε2 + α̃2K)n ε2n+1 + εJ− (ε2+α̃2K)n−ε2n

K
J+


 .

(21)
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Now we have all the ingredients that enable us to derive the explicit form of the time
evolution operator. Indeed, expanding U(t) in Tailor series and using equations (20) and (21)
we find that the matrix elements of the time evolution operator in the space C

3 ⊕ C
1 are given

by (h̄ = 1)

U11(t) = exp (−iεt) + J+

[
cos(tM) − cos (εt)

K
− i

ε sin(tM) − M sin(εt)

KM

]
J−, (22)

U12(t) = −iα̃J+
sin(tM)

M
, (23)

U13(t) = J+

[
cos(tM) − cos (εt)

K
− i

ε sin(tM) − M sin(εt)

KM

]
J+, (24)

U22(t) = cos(tM) + iε
sin(tM)

M
, (25)

U23(t) = −iα̃
sin(tM)

M
J+, (26)

U33(t) = exp(−iεt) + J−

[
cos(tM) − cos (εt)

K
− i

ε sin(tM) − M sin(εt)

KM

]
J+, (27)

U14(t) = U24(t) = U34(t) = 0, (28)

U44(t) = exp(iκt), (29)

where we have introduced the operator M =
√

ε2 + α2K/N . The remaining matrix elements
can be found by simply taking the transpose (not the Hermitian conjugate) of those listed
above. Taking into account the trace properties of the lowering and raising operators, it can
be shown by virtue of equation (13) that the elements of the reduced density matrix can be
written as

ρ11(t) = trB
{
ρB(0)

[
ρ0

11U11(t)U
†
11(t) + ρ0

22U12(t)U
†
12(t) + ρ0

33U13(t)U
†
13(t)

]}
(30)

ρ12(t) = trB
{
ρB(0)

[
ρ0

12U11(t)U
†
22(t) + ρ0

23U12(t)U
†
23(t)

]}
(31)

ρ13(t) = trB
{
ρB(0)

[
ρ0

13U11(t)U
†
33(t)

]}
(32)

ρ14(t) = trB
{
ρB(0)

[
ρ0

14U11(t)U
†
44(t)

]}
(33)

ρ22(t) = trB
{
ρB(0)

[
ρ0

11U21(t)U
†
21(t) + ρ0

22U22(t)U
†
22(t) + ρ0

33U23(t)U
†
23(t)

]}
(34)

ρ23(t) = trB
{
ρB(0)

[
ρ0

12U21(t)U
†
32(t) + ρ0

23U22(t)U
†
33(t)

]}
(35)

ρ24(t) = trB
{
ρB(0)

[
ρ0

24U22(t)U
†
44(t)

]}
(36)

ρ33(t) = trB
{
ρB(0)

[
ρ0

11U31(t)U
†
31(t) + ρ0

22U32(t)U
†
32(t) + ρ0

33U33(t)U
†
33(t)

]}
(37)

ρ34(t) = trB
{
ρB(0)

[
ρ0

34U33(t)U
†
44(t)

]}
(38)

ρ44(t) = ρ0
44. (39)

The remaining matrix elements are obtained by taking the complex conjugate of those listed
above.

Figure 1 illustrates the time dependence of some elements of the reduced density matrix
for different values of the number of spins in the environment. We can see that the curves
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Figure 1. Evolution in time of some elements of the reduced density matrix for different values of
environmental spins: N = 10 (solid lines), N = 100 (dashed lines) and N = 300 (dotted lines).
The initial state corresponding to ρ11(t) and ρ22(t) is the product state |− −〉. Here we have set
ρ0

12 = ρ0
23. The parameters are ε = α and gβ = 10.

corresponding to each matrix element get more and more closer from each other as the number
of bath spins increases. If we let N take sufficiently large values (N ∼ 100), then the curves
saturate with respect to N and become almost identical. In the following subsection we study
the case in which N → ∞. All the results regarding decoherence and entanglement evolution
will be studied in this limit.

3.3. Infinite number of spins in the bath

In order to study the limit of an infinite number of environmental spins it should be stressed
that the operators J± as well as Jz are traceless in the standard basis formed by the common
eigenvectors of J 2 and Jz. Moreover, the scaled lowering and raising operators J±/

√
N are

well-behaved fluctuation operators with respect to the tracial state on the bath, and satisfy

lim
N→∞

2−N trB

{
k∏

i=1

(
J+J−
N

)ni

}
= n!

2n
, (40)

where n = ∑k
i=1 ni and ni ∈ N. This follows from the fact that [24, 27]

trB{(J+J−)n} ≈ 2NNnn!

2n
. (41)

Thus , J+/
√

N converges to a normal complex random variable, z, with the probability density
function [24]

z �→ 2

π
e−2|z|2 . (42)
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In particular, we can infer that

lim
N→∞

2−N trB

{
f

(
J±J∓

N

)}
= 2

π

∫
C

f (|z|2) e−2|z|2 dz dz∗ (43)

provided that |f (z)| does not increase faster than e−2|z|2 for all z ∈ C. This is typically the
case for the functions e−ar2

h(r2) where |h(r2)| < ∞, r ∈ R and Re(a) � −2. Similarly, the
operator Jz/

√
N converges to a normal real random variable, τ , with the probability density

function

τ �→
√

2

π
e−2τ 2

. (44)

In this case, a similar equation to (43) can be obtained by replacing J±/
√

N and |z| by
Jz/

√
N and τ , respectively. We have already mentioned that for antiferromagnetic interactions

within the bath, isotropic and anisotropic Heisenberg Hamiltonian operators with � � 0 are
completely equivalent when N → ∞. Let us explain this a little bit. One can see that ρB(0)

always appears between two matrix elements of U(t). If we exchange the order of ρB(0)

with one of the above matrix elements, which is possible using simple commutation relations,
we end up with extra operators of the form Jz/N . These can be indeed neglected when
N → ∞. Then using the cyclic property of the trace, it is possible to transform any function
ϒijk� = UijU

†
k� inside the trace sign into a function which depends on J±J∓

N
. Hence, for all

� � 0

〈ϒijk�〉 = lim
N→∞

1

trB
{
e

−gβ

2N
[J 2+(�−1)J 2

z ]
} trB

{
e

−gβ

2N
[J 2+(�−1)J 2

z ]ϒijk�

(
J±J∓

N

)}

=
∫

R

∫
C

exp{−(2 + gβ/2)|z|2 − (2 + gβ�/2)τ 2}ϒijk�(|z|2) dτ dz dz∗∫
R

∫
C

exp{−(2 + gβ/2)|z|2 − (2 + gβ�/2)τ 2} dτ dz dz∗

=
∫ ∞

0 e−(2+gβ/2)r2
ϒijk�(r

2)r dr∫ ∞
0 e−(2+gβ/2)r2

r dr
= (4 + gβ)

∫ ∞

0
e−(2+gβ/2)r2

ϒijk�(r
2)r dr, (45)

where we have used polar coordinates (r, φ) to simplify the integrals with respect to the
complex variable z = reiφ . Clearly, the latter expression is independent of �. Using the
above result we find that

〈
U11U

†
11

〉 = 〈
U11U

†
33

〉 = 〈
U33U

†
33

〉
= 1

4

[
3
2 + 1

2f (2t) + 2 cos(εt)f (t) + g(t) + 2 sin(εt)�(t)
]
, (46)〈

U12U
†
12

〉 = 〈
U12U

†
23

〉 = 〈
U23U

†
23

〉 = 〈
U32U

†
32

〉 = h(t), (47)〈
U13U

†
13

〉 = 1
4

[
3
2 + 1

2f (2t) − 2 cos(εt)f (t) + g(t) − 2 sin(εt)�(t)
]
, (48)〈

U11U
†
22

〉 = 1
2

[
1
2 + 1

2f (2t) − g(t) − i�(2t) + e−iεt (f (t) − i�(t))
]
, (49)〈

U22U
†
22

〉 = 1
2 [1 + f (2t) + 2g(t)], (50)〈

U22U
†
33

〉 = 1
2

[
1
2 + 1

2f (2t) − g(t) + i�(2t) + eiεt (f (t) + i�(t))
]
, (51)

〈U11〉 = 〈U33〉 = 1
2

[
f (t) − i�(t) + e−iεt

]
, (52)

〈U22〉 = f (t) + i�(t). (53)
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Here we have introduced the functions

f (t) = 〈cos(t
√

ε2 + 2r2)〉, g(t) =
〈
ε2 sin2(t

√
ε2 + 2r2)

ε2 + 2r2

〉
,

h(t) =
〈
r2 sin2(t

√
ε2 + 2r2)

ε2 + 2r2

〉
, �(t) =

〈
ε

sin(t
√

ε2 + 2r2)√
ε2 + 2r2

〉
,

(54)

where ε and t are, respectively, given in units of α−1 and α. Let us derive, for example, the
explicit expression of �(t). We have

�(t) = ε(4 + gβ)

∫ ∞

0
e−(2+gβ/2)r2 sin(t

√
ε2 + 2r2)√

ε2 + 2r2
r dr

= ε

2
(4 + gβ) e

ε2

4 (4+gβ)

∫ ∞

ε

dη e− η2

4 (4+gβ) sin(ηt), (55)

where we have made the change of variable η2 = ε2 + 2r2. The above expression can be
further simplified to

�(t) = ε
√

4 + gβ exp

[
ε2

4
(4 + gβ) − t2

4 + gβ

]
Im

{∫ ∞

a

e−δ2
dδ

}
, (56)

where δ = η

2

√
4 + gβ − i t√

4+gβ
, a = ε

2

√
4 + gβ − i t√

4+gβ
and Im(x) stands for the imaginary

part of x. The latter integral is nothing but the complementary error function [32], which can
be transformed into a sum of two ordinary error functions and we simply get

�(t) = i
√

πε

4

√
4 + gβ exp

[
ε2

4
(4 + gβ) − t2

4 + gβ

]

×
{

erf

[
ε/2(4 + gβ) − it√

4 + gβ

]
− erf

[
ε/2(4 + gβ) + it√

4 + gβ

]}
, (57)

with

erf(z) = 2√
π

∫ z

0
e−t2

dt. (58)

Following the same method we find that

f (t) = cos(εt) +
it

2

√
π

4 + gβ
exp

[
ε2

4
(4 + gβ) − t2

4 + gβ

]

×
{

erf

[
ε/2(4 + gβ) + it√

4 + gβ

]
− erf

[
ε/2(4 + gβ) − it√

4 + gβ

]}
, (59)

g(t) = ε2(4 + gβ)

8
e

ε2

4 (4+gβ)�

[
0,

ε2

4
(4 + gβ)

]
− ε2(4 + gβ)

4
e

ε2

4 (4+gβ)

×
∫ ∞

ε

dr
cos(2rt)

r
e− r2

4 (4+gβ), (60)

h(t) = 1

4
− ε2

16
(4 + gβ) e

ε2

4 (4+gβ)�

[
0,

ε2

4
(4 + gβ)

]
− 1

4
cos(2εt)

+
it

4

√
π

4 + gβ
exp

[
ε2

4
(4 + gβ) − 4t2

4 + gβ

] {
erf

[
ε/2(4 + gβ) − 2it√

4 + gβ

]

− erf

[
ε/2(4 + gβ) + 2it√

4 + gβ

] }
+

ε2(4 + gβ)

8
e

ε2

4 (4+gβ)

∫ ∞

ε

dr
cos(2rt)

r
e− r2

4 (4+gβ), (61)
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Figure 2. Comparison between the behaviour of ρ11(t) obtained for finite and infinite number of
environmental spins: N = 100 (solid line), N = 300 (dashed line) and N → ∞ (dotted line).
The initial state is |− −〉 with ε = α and gβ = 10.

where

�(a, z) =
∫ ∞

z

ta−1 e−t dt (62)

is the incomplete gamma function. Note that the integral in equations (60) and (61) cannot be
calculated analytically; we leave it in that form.

Using the Riemann–Lebesgue lemma it is possible to find the asymptotic behaviour (i.e.
when t → ∞) of the above functions, namely

f (∞) = �(∞) = 0, (63)

g(∞) = ε2

8
(4 + gβ) e

ε2

4 (4+gβ)�

[
0,

ε2

4
(4 + gβ)

]
, (64)

h(∞) = 1

4
− ε2

16
(4 + gβ) e

ε2

4 (4+gβ)�

[
0,

ε2

4
(4 + gβ)

]
. (65)

Furthermore, we can prove using the following asymptotic expression of the incomplete
gamma function [32]

�(a, z) ∼ za−1 e−z

[
1 +

a − 1

z
+

(a − 1)(a − 2)

z2
+ · · ·

]
, (66)

when z → ∞ provided |arg z| < 3π/2 that

lim
β,ε→∞

g(∞) = 1
2 , lim

β,ε→∞
h(∞) = 0. (67)

The latter results will be used below to study decoherence and entanglement of the central
qubits. In figure 2, we have displayed the evolution in time of ρ11(t) corresponding to the
state |− −〉 for different vales of N including the limit N → ∞.

3.4. Second-order master equation

The second-order master equation can be derived in the interaction picture by noting that

ρ̃ tot(t) = ρ(0) ⊗ ρB(0) − i
∫ t

0
ds[H̃ I (s), ρ̃ tot(s)], (68)

where Ã(t) = eiH0tA(t) e−iH0t . It is easy to see that

trB{[H̃ I (t), ρ(0) ⊗ ρB(0)]} = 0. (69)
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Then under Born approximation, one can show that the second-order master equation yields
the following set of integro-differential equations:

˙̃ρ11(t) = −2α2R

∫ t

0
cos[2ε(t − s)][ρ̃11(s) − ρ̃22(s)] ds, (70)

˙̃ρ12(t) = −α2R e2iεt
∫ t

0
[3ρ̃12(s) − 2ρ̃23(s)] ds, (71)

˙̃ρ13(t) = −2α2R

∫ t

0
cos[2ε(t − s)]ρ̃13(s) ds, (72)

˙̃ρ22(t) = −2α2R

∫ t

0
cos[2ε(t − s)][2ρ̃22(s) − ρ̃11(s) − ρ̃33(s)] ds, (73)

˙̃ρ23(t) = −α2R e−2iεt
∫ t

0
[3ρ̃23(s) − 2ρ̃12(s)] ds, (74)

˙̃ρ33(t) = −2α2R

∫ t

0
cos[2ε(t − s)][ρ̃33(s) − ρ̃22(s)] ds, (75)

˙̃ρ14(t) = −α2R e2iεt
∫ t

0
e−i(ε−κ)s ρ̃14(s) ds, (76)

˙̃ρ24(t) = −2α2R e−2iεt
∫ t

0
ei(ε+κ)s ρ̃24(s) ds, (77)

˙̃ρ34(t) = −α2R e2iεt
∫ t

0
e−i(ε−κ)s ρ̃34(s) ds, (78)

˙̃ρ44(t) = 0, (79)

where the correlation function is given by R = trB
{

J+J−
N

ρB(0)
}= trB

{
J−J+

N
ρB(0)

}
. In the

limit N → ∞, we find that R = 2
4+gβ

. Clearly, ˙̃ρ11(t) + ˙̃ρ22(t) + ˙̃ρ33(t) = 0, as it should
be because ρ̃44(t) = ρ44(t) = ρ44(0). The time-local master equation can be obtained by
replacing the matrix elements ρ̃ij (s) in equations (70)–(79) by ρ̃ij (t). The integration of the
resulting first-order differential equations yields solutions involving the exponential function.
For example when ε = 0, we find that

ρ13(t) = ρ13(0) exp

[
− 2α2t2

4 + gβ

]
. (80)

This solution is valid only at short intervals of time; it quickly diverges from the exact solution
as t increases. Nevertheless, we can see that the Gaussian behaviour is clearly reproduced.

4. Decoherence and entanglement evolution

From equation (39), we can see that the maximally entangled state |0, 0〉 does not evolve in
time. The corresponding one-dimensional subspace C

1 is thus decoherence free. Taking into
account the unitarity condition of the time evolution operator U(t)U†(t) = I4, we find that
the state 1

3 I3 is also decoherence free. Hence, the decoherence-free subspace of our model
is of dimension 2. The qubits prepared in any linear combination of the above states do not
perceive the surrounding environment. In contrast, any other pure state decoheres evolving
into mixed one and hence loses partially or completely its purity.
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Generally speaking, the elements of the reduced density matrix show partial decoherence.
Indeed, by virtue of equations (63)–(65), it can be shown that the elements of the stationary
density matrix ρ(∞) are given by

ρ11(∞) = ρ33(∞) = 1

8

[
(3 + �)

(
ρ0

11 + ρ0
33

)
+ 2ρ0

22(1 − �)
]
, (81)

ρ12(∞) = ρ23(∞) = ρ0
12 + ρ0

23

4
(1 − �), (82)

ρ13(∞)

ρ0
13

= 3 + �

8
, (83)

ρ14(∞)

ρ0
14

= ρ34(∞)

ρ0
34

= 1

2
e−i(ε+κ)t , (84)

ρ22(∞) = 1

4

[
(1 − �)

(
ρ0

11 + ρ0
33

)
+ 2ρ0

22�
]
, (85)

ρ24(∞) = 0, (86)

ρ44(∞) = ρ0
44, (87)

where � = ε2

4 (4 + gβ) exp
[

ε2

4 (4 + gβ)
]
�

[
0, ε2

4 (4 + gβ)
]
. Note that the latter quantity satisfies

0 � � � 1. This allows us to find upper bounds of the asymptotic values of the matrix
elements ρij (t). For instance, if 2ρ0

22 � ρ0
11 + ρ0

33 then we have ρ11(∞) � 1
2

(
ρ0

11 + ρ0
33

)
and

ρ13(∞) � 1
2ρ0

13. Similarly, when 2ρ0
22 � ρ0

11 +ρ0
33 then ρ11(∞) � 1

8

[
2ρ0

22 + 3
(
ρ0

11 +ρ0
33

)]
, and

ρ22(∞) � 1
2ρ0

22. The matrix elements ρ14(∞) and ρ34(∞) oscillate around half of their initial
values with period equal to 2π/(ε + κ). When ε = 0, the asymptotic state is independent of
the bath temperature.

4.1. Measures of decoherence and entanglement

Due to the decoherence process, initially pure states evolve into mixed ones. Thus it is natural
to use the extent of mixing as a measure of decoherence. This task can be carried out with the
help of the quantity

D(t) = 1 − tr[ρ(t)2], (88)

usually called linear entropy or idempotency. The above measure is effectively a monotonic
decreasing function of the purity of the system; it vanishes for pure states and reaches its
maximum value, Dmax = 3

4 , for the completely mixed state 1
4 I4.

Although the linear entropy quantifies the decoherence, it does not provide any other
information about the state of the system. The so-called fidelity, which we denote by F(t), is
a measure of decoherence that quantifies the deviation from the free evolution of the system,
i.e. in the absence of the surrounding environment [33]. Explicitly, we have

F(t) = tr[ρ̄(t)ρ(t)], (89)

where ρ̄(t) describes the evolution, under the influence of the Hamiltonian operator H0, of the
central system initially prepared in the pure state ρ(0), namely

ρ̄(t) = e−iH0t ρ(0) eiH0t , e−iH0t =




e−iεt 0 0 0
0 eiεt 0 0
0 0 e−iεt 0
0 0 0 eiκt


 . (90)
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Figure 3. Time evolution of the linear entropy and the fidelity in the case of the initial state |− −〉
for different values of ε: ε = 0 (solid lines), ε = 0.5α (dashed lines) and ε = 2α (dotted lines)
with gβ = 10.

Note that the fidelity reaches its maximum value Fmax = 1 if and only if ρ(t) = ρ̃(t).
Clearly, in the case of initial pure state ρ(0) = |
(0)〉〈
(0)|, where |
(0)〉 is an eigenvector
of H0, we simply have ρ̄(t) ≡ ρ(0). This means that the maximum values of the fidelity
indicate the revival of the initial state when the latter is an eigenvector of H0. We shall use
this property when studying entanglement evolution.

In this work, we use the concurrence as a measure of entanglement between the central
qubits. Recall that the concurrence corresponding to the reduced density matrix ρ(t) is defined
as [34]

C(ρ) = max{
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4, 0} (91)

where λ1, λ2, λ3 and λ4 are the eigenvalues, in descending order, of the operator

�(t) = ρ(t)(σy ⊗ σy)ρ
∗(t)(σy ⊗ σy) (92)

written in C
2 ⊗ C

2 and ρ∗(t) designates the complex conjugate of the density matrix. The
values of the concurrence range from zero, for unentangled states, to one for maximally
entangled states. Since the concurrence is invariant under unitary transformations, we can
rewrite the operator �(t) in the basis of the space C

3 ⊕ C
1 as

�(t) = ρ(t)Vρ∗(t)V , V =




0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1


 . (93)

Below, we investigate decoherence and entanglement dynamics for some particular initial
states that are of interest for applications. Other states can be studied with exactly the same
method.

4.2. Results and discussion

Case 1: |
(0)〉 = |∓∓〉. Let us suppose that the tow-qubit system is initially prepared in the
product state |− −〉 = |1,−1〉. The corresponding time-dependent density matrix is diagonal;
the idempotency is then equal to D(t) = 1 − ∑

i[ρii(t)]2. Since |− −〉 is an eigenvector of
the Hamiltonian H0, the fidelity simplifies to F(t) = ρ11(t). The time dependence of the
linear entropy is shown in figures 3 and 4 for different values of the interaction strength ε

and the bath temperature T. We can see that D(t) increases starting from its initial value,
zero, tending asymptotically to D(∞) which can be evaluated as (21 − 2� − 3�2)/32. This



11582 Y Hamdouni

0 5 10 15 20
t

0

0.1

0.2

0.3

0.4

0.5

0.6
D
t

0 5 10 15 20
t

0.9

0.8

0.7

0.6

0.5

1

F
t

Figure 4. Time evolution of the linear entropy and the fidelity in the case of the initial state |− −〉
at different values of gβ: gβ = 0 (solid lines), gβ = 2 (dashed lines) and gβ = 20 (dotted lines)
with ε = α.
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Figure 5. 〈σ 1
z (t)〉 versus the scaled time αt for different values of ε and gβ: (i) ε = 0 (solid lines),

ε = 0.5α (dashed lines) and ε = 2α (dotted lines) with gβ = 10 for the figure on the left; (ii)
gβ = 0 (solid lines), gβ = 2 (dashed lines) and gβ = 20 (dotted lines) with ε = α for the figure
on the right. The initial state is |− −〉.

limit assumes larger values as the strength of interactions ε decreases, in contrast, with the
bath temperature T. Therefore, in order to ensure lower linear entropy, and consequently to
reduce the effect of the environment, one has to increase (decrease) the value of the ratio ε/α

(temperature T). Thus, we set � = 1 to find that Dmin(∞) = 0.5. The fidelity shown in the
above figures displays reverse behaviour compared to that of D(t); its asymptotic value turns
out to be (3 + �)/8 from which it follows that Fmax(∞) = 0.5. It is quiet interesting to note
that Dmin(∞) + Fmax(∞) = 1.

The mean value of the operator σ 1
z (t) = 2S1

z (t) corresponding to the first spin is found to
be 〈

σ 1
z (t)

〉 = −[cos(εt)f (t) + sin(εt)�(t)]. (94)

The latter quantity decays to zero, as shown in figure 5, indicating that the asymptotic state of
the qubit is a fully mixture of the eigenvectors |±〉. Moreover, we can see that

〈
σ 1

z (t)
〉

decays
slower at low bath temperatures and large values of ε. A straightforward calculation yields
the following expression of the concurrence

C(t) = max{0, 2 max[
√

ρ11(t)ρ33(t), ρ22(t)] − 2
√

ρ11(t)ρ33(t) − ρ22(t)}. (95)

It turns out that C(t) ≡ 0 independently of the values of ε and the temperature T. This implies
that the state of the system is always separable; neither the interaction between the central
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Figure 6. Time dependence of D(t), F (t), 〈σ 1
z (t)〉 and C(t) for different values of λ in the case

of the initial state |− +〉: λ = 0 (solid lines), λ = 0.5α (dashed lines) and λ = 2α (dotted lines)
with � = 0 and gβ = 10.

qubits nor the coupling with the bath is able to generate entanglement. All the above results
apply for the state |+ +〉 as well.

Case 2: |
(0)〉 = |− +〉. The state |− +〉 can be written as a combination of the states |1, 0〉
and |0, 0〉, namely |− +〉 = 1√

2
(|1, 0〉 + |0, 0〉). In this case, the diagonal elements together

with ρ24(t) are the only non-zero elements of the reduced density matrix. The idempotency,
the fidelity and the mean value of σ 1

z (t) are explicitly given by

D(t) = 3
4 − [ρ11(t)]

2 − [ρ22(t)]
2 − [ρ33(t)]

2 − 2|ρ24(t)|2, (96)

F(t) = 1
4 {1 + 2ρ22(t) + 4 Re[ρ24(t) e4i�t ]}, 〈

σ 1
z (t)

〉 = −2 Re[ρ24]. (97)

The time dependence of the latter quantities is similar to that of the above case. When
� = 0, the asymptotic values of the linear entropy and the fidelity are, respectively, equal to
(21 − 2� − 3�2)/32 and (3 + �)/8. Hence we find again that Dmin(∞) = Fmax(∞) = 0.5
and limt→∞〈σ 1

z (t)〉 = 0.
The expression of the concurrence is quiet long; we will not show it here for shortness.

Nevertheless, we can distinguish to different cases. The first one corresponds to � = 0,
the variation in time of the corresponding concurrence is displayed in figures 6 and 7 for
different values of λ and T. We can see that entanglement between the central qubits is
generated when λ �= 0 even though the initial state is separable. If there is no interaction
between the central spins, the concurrence is always zero. We can see that the increase and
the decay of the concurrence are faster at high temperatures and vice versa. Moreover, the
numerical simulation shows that the concurrence never exceeds the value Cmax = 0.5: no
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Figure 7. Evolution in time of D(t), F (t), 〈σ 1
z (t)〉 and C(t) at different values of gβ in the case

of the initial state |− +〉: gβ = 0 (solid lines), gβ = 2 (dashed lines) and gβ = 20 (dotted line)
with λ = α and � = 0.

maximally entangled states can be produced in this case. Note that |− +〉 is an eigenvector of
the Hamiltonian H0, in the absence of the surrounding environment, the latter state remains
always separable. Roughly speaking, the interaction with the spin bath changes the state of
the central system so that the action of H0 produces, to some extent, entanglement between
the qubits.

The second case corresponds to � �= 0. Here |− +〉 is not an eigenvector of H0; the action
of the latter on this state periodically generates maximally entangled states. Hence, the effect
of the environment consists of reducing the amount of the produced entanglement as shown
in figure 8 . We can also see that the maximum values of C(t) occur at moments of time for
which

〈
σ 1

z (t)
〉

is equal to zero.

Case 3: |
(0)〉 = 1
2 (|−〉 + |+〉)⊗2. In this case, it can be shown that

D(t) = 1 − [ρ22(t)]
2 − 2{[ρ11(t)]

2 + |ρ12(t)|2 + |ρ13(t)|2 + |ρ23(t)|2}, (98)

F(t) = 1
4 {1 + ρ22(t) + 2 Re[ρ13(t)] +

√
2[(ρ∗

12(t) + ρ23(t)) e−2iεt + c.c]}, (99)〈
σ 1

z (t)
〉 = 0. (100)

Hence, the asymptotic value of the linear entropy is equal to (267 + 114�2 − 77�)/256, from
which it follows that Dmin(∞) = 19/32. The dependence of D(t) and F(t) on ε is shown
in figure 9; their variation with respect to T is quiet similar to that of the above two cases.
The asymptotic fidelity shows periodic oscillations, its maximum value cannot be exactly
determined. Since H0 induces entanglement between the central qubits, we conclude that the
influence of the environment consists of reducing the degree of entanglement of the central
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Figure 8. Time dependence of C(t), 〈σ 1
z (t)〉 and F(t) in the case of the initial state |− +〉 for

λ = 2α,� = α and gβ = 10.
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Figure 9. Time dependence of D(t) and F(t) at different values of ε in the case of the initial
state 1

2 (|−〉 + |+〉)⊗2: ε = 0 (solid lines), ε = 0.5α (dashed lines) and ε = 2α (dotted lines) with
gβ = 10.

system. This is shown in figure 10 where we have displayed the dynamics of entanglement at
different values of ε.

Case 4: |
(0)〉 = 1√
2
(|− +〉 + |+ −〉). If the initial state of the qubits is the maximally

entangled state |1, 0〉 then the density matrix is again diagonal. Since |1, 0〉 is an eigenvector
of H0, we simply get F(t) = ρ22(t). The mean value of σ 1

z (t) remains always zero. The
behaviour of the linear entropy and the fidelity is shown in figures 11 and 12. The asymptotic
values of the above measures are given by (5 − 2� − 3�2)/8 and (1 + �)/2, respectively.
Hence, we find that Dmin(∞) = 0 and Fmax(∞) = 1. Note that the above values are obtained
for ε, β → ∞. This implies that the state of the qubits can be protected from decohering at
very low bath temperatures or when their mutual interactions are sufficiently strong.
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Figure 10. C(t) versus αt at different values of ε in the case of the initial state 1
2 (|−〉 + |+〉)⊗2:

ε = 0.5 (solid line), ε = 2α (dashed line) with gβ = 10. The concurrence corresponding to ε = 0
is identically zero.
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Figure 11. Time dependence of D(t), F (t) and C(t) at different values of ε in the case of the
maximally entangled state 1√

2
(|− +〉 + |+ −〉): ε = 0 (solid lines), ε = 0.5α (dashed lines) and

ε = 2α (dotted lines) with gβ = 10.

The concurrence in this case is given by relation (95). We can see from figure 11 that for
ε = 0 the concurrence decays from its maximum value to vanish at a certain value of time, the
state of the two-qubit system becomes separable. This behaviour is known as the entanglement
sudden death which has been investigated for bosonic environments [35]. As we increase the
value of the interaction strength ε, the concurrence approaches its initial maximum value
Cmax = 1. This happens when the fidelity, in turn, approaches its maximum value implying
that the initial state of the two-qubit system revives. For example, the asymptotic value of the
concurrence turns out to be

C(∞) = �. (101)
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Figure 12. Variation in time of D(t), F (t) and C(t) for different values of gβ in the case of the
maximally entangled state 1√

2
(|− +〉 + |+ −〉): gβ = 0 (solid lines), gβ = 2 (dashed lines) and

gβ = 20 (dotted lines) with ε = α.

Since the quantity � is a monotonic increasing function of both ε and β, and satisfies
limε,β→∞ � = 1, we simply obtain Cmax(∞) = Fmax(∞) = 1. When ε �= 0 the concurrence
may vanish for a certain interval of time then revives again to tend to its asymptotic value
(101). If ε is sufficiently large, the concurrence never vanishes as displayed in figure 11.

Case 5: |
(0)〉 = 1√
2
(|+ +〉 + |− −〉). In this case, the non-zero elements of the reduced

density matrix are ρ11(t), ρ22(t), ρ33(t) and ρ13(t). Consequently, the mean value of σ 1
z (t)

remains always zero. The idempotency and the fidelity are given by

D(t) = 1 − 2([ρ11(t)]
2 + [ρ13(t)]

2) − [ρ22(t)]
2, F (t) = ρ11(t) + ρ13(t). (102)

The asymptotic values of the above measures are, respectively, given by (75 − 14� −
13�2)/128 and (9 + 3�)/16. It follows that Dmin(∞) = 0.375 and Fmax(∞) = 0.75

The square roots of the eigenvalues of the matrix �(t) can be easily calculated; they are
given explicitly by ρ22(t), |ρ11(t) + ρ13(t)| and |ρ11(t) − ρ13(t)|. Hence, the concurrence in
this case is given by

C(t) = max{0, 2 max[ρ22(t), |ρ11(t) + ρ13(t)|, |ρ11(t) − ρ13(t)|]
− ρ22(t) − |ρ11(t) + ρ13(t)| − |ρ11(t) − ρ13(t)|}. (103)

From figure 13, we can see that even when ε = 0 the asymptotic value of the concurrence is
different from zero. Indeed, by a direct calculation we find

C(∞) = 1 + 3�

8
, (104)

implying that 0.125 � C(∞) � 0.5. By contrast with |1, 0〉, the maximally entangled state
1√
2
(|1,−1〉 + |1, 1〉) does not revive, its entanglement cannot be recovered even for large
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Figure 13. Time dependence of D(t), F (t) and C(t) at different values of ε in the case of the
maximally entangled state 1√

2
(|− −〉 + |+ +〉): ε = 0 (solid lines), ε = 0.5α (dashed lines) and

ε = 2α (dotted lines) with gβ = 10.

values of ε at very low temperatures of the bath. We also see that for noninteracting qubits,
entanglement vanishes for some interval (dark period) then revives again.

Case 6: Werner states. Let us consider Werner states

ρ0
W = 1

4 (1 − p)I4 + p|�〉〈�|, (105)

where |�〉 = 1√
2
(|− −〉 + |+ +〉) and 0 � p � 1. In C

3 ⊕ C
1 the above density matrix takes

the form

ρ0
W =




1+p

4 0 p

2 0

0 1−p

4 0 0
p

2 0 1+p

4 0

0 0 0 1−p

4


 . (106)

The corresponding stationary density matrix is then equal to

ρ∞
W =




2+p(1+�)

8 0 p(3+�)

16 0

0 1−p�

4 0 0
p(3+�)

16 0 2+p(1+�)

8 0

0 0 0 1−p

4


 . (107)

The maximum values of the asymptotic linear entropy and fidelity are, respectively, given
by (6 − 3p2)/8 and (1 + 2p2)/4. The largest eigenvalue of the operator �∞ is equal to
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Figure 14. Variation in time of D(t) and C(t) for different values of gβ in the case of the maximally
entangled state 1√

2
(|−−〉+ |+ +〉): gβ = 0 (solid lines), gβ = 2 (dashed lines) and gβ = 20 (dotted

lines) with ε = α.

(4 + 5p + 3p�)/16, the remaining ones read (1 − p)/4, (1 − p�)/4 and (4 + p� − p)/16.
The asymptotic value of the concurrence is then equal to

C(ρ∞
W ) = max

{
0,

1

8
[p(3� + 5) − 4]

}
. (108)

Therefore, the two-qubit system is entangled if and only if

p >
4

5 + 3�
. (109)

The minimum value of p for which the asymptotic state of the qubits is entangled is equal to
0.5 which corresponds to ε → ∞ and/or T → 0. The behaviour of the concurrence in this
case is similar to that of |�〉.

To conclude our discussion we note that in [36], the fidelity of any mixed state, calculated
with respect to a maximally entangled state, is shown to be bounded above by [1 + C(t)]/2.
This fully agrees with our results as can be seen in the case of the maximally entangled state
|1, 0〉. Indeed, when ρ22(t) � ρ11(t) then C(t) = max[2ρ22(t) − 1, 0] = max[2F(t) − 1, 0].
The corresponding asymptotic values do satisfy the latter condition. The above equality
implies that the concurrence is equal to the negativity [36]. The critical point at which C(t)

vanishes corresponds to F(t) = 0.5 (see figure 11). These results also hold for C(t) and
F(t) corresponding to the state 1√

2
(|+ +〉 + |− −〉) at least at long times. In [37], numerical

simulation was used to study entanglement dynamics of two qubits coupled to the anisotropic
bath. The authors found that concurrence can be produced in the case of the initial states
|± ±〉, if the qubits are subjected to an external magnetic field. It would then be interesting to
investigate this situation analytically.

5. Conclusion

In conclusion we have studied decoherence and entanglement dynamics of two qubits
interacting with the antiferromagnetic spin bath at thermal equilibrium. The time evolution
operator of the composite system was analytically derived using symmetry properties of the
model Hamiltonian. The reduced density matrix was calculated by performing the partial
trace over the irrelevant bath degrees of freedom. In the limit of an infinite number of spins
in the environment, N, the lowering and raising operators corresponding to the total angular
momentum, as well as its z-component, converge to normal random variables. This enabled
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us to calculate the partial trace when N → ∞. The above limit turns out to be a very good
approximation for finite numbers of spins. We found that the off-diagonal elements of the
reduced density matrix show partial decoherence. The decoherence-free subspace in this
model is spanned by the states |0, 0〉〈0, 0| and 1

3 I3. Using the linear entropy and the fidelity,
we studied decoherence of the central qubits for different initial states. We showed that the
decay of the elements of the reduced density matrix is Gaussian, which is a hallmark of non-
Markovian dynamics. The effect of decoherence can be reduced at a low bath temperature
and strong coupling between the central qubits.

Entanglement behaviour depends on the initial states of the qubits. The concurrence
remains always zero when the central qubits are initially prepared in the pure product states
|± ±〉. These remain always separable. In contrast, the qubits become entangled if they are
prepared in the states |± ∓〉 or 1

2 (|−〉 + |+〉)⊗2. In the latter case, the entanglement generation
is due to mutual interactions between the central qubits. The situation is different in the case
of the states |± ∓〉 which are the eigenvectors of the free Hamiltonian when � = 0: this is
an example of environment-induced entanglement. Initially entangled states lose partially or
completely their entanglement. This behaviour strongly depends on the bath temperature and
the strength of interactions between qubits. It is found that entanglement can be protected to
some extent from decohering at low bath temperatures and/or strong interactions between the
central qubits if they are prepared in the maximally entangled state |1, 0〉. For small values
of ε, it is found that entanglement displays sudden death. Finally, I think that the results
presented here help extending the class of exactly solvable models for spin systems.
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